Saltar al contenido

Corpus Reacción: consumers engagement in Facebook posts

NombreCorpus Reacción
Ligahttps://github.com/lyr-uam/CorpusReaccion
TítuloCorpus Reacción: consumers engagement in Facebook posts
Presentado porRosas-Quezada, E. , Ramírez-de-la-Rosa, G. Villatoro-Tello, E.
LanguageMexican Spanish
Código de lenguaes-MX
Categoríaresource
Estadoavailable
Tipocorpora
Año2019

We took on the task of collecting and standardizing a large dataset, ≈ 14, 000 of Facebook posts (https://github.com/lyr-uam/CorpusReaccion) from 10 brands that have an important presence in Mexico. Collected corpus (Table 1), in Spanish language, can be used for training and evaluating automatic systems that aim at predicting several customer’s engagement metrics, specifically Face- book’s reactions (i.e., Like, Love, Haha, Wow, Sad and Angry), sharing amount, and the number of comments generated by a post. Therefore, we define the task of predicting consumer’s engagement as the process of classifying whether a post will have higher (or lower) impact volume than the average seen in training data. Accordingly, our collected dataset defines six binary classification prob- lems, namely: i) comments (|C|), ii) sharing (|S|), ii) total reactions (|R|), iv) positive reactions (|R+|), v) negative reactions (|R−|) and, vi) neutral reactions (|R |). Each classification problem has categories high-impact and low-impact. The methodology for assigning each post’s category was: for each classification problem, we compute the average value of metric k among all the posts from the ten brands, this is referred as x̄k . Once we know the value x̄k , for each post contained in brand i, we review the value of metric k in post pi , thus, if pi,k > x̄k the category of the post is assigned to high-impact, or low-impact otherwise.

Table 1. Number of high- and low- impact instances for each problem.

Brand nameRR +R −RCS
high lowhigh lowhigh lowhigh lowhigh lowhigh low
Clash Royale ES189 369165 393209 349217 341264 29439 519
Canon Mexicana100 101494 102043 107190 102478 103696 1018
Muy Interesante México775 1393790 1378136 2032374 1794153 2015824 1344
Cinépolis991 958966 983353 1596729 1190883 1067745 1204
Discovery Channel109 1566112 1563110 156585 15909 166660 1615
National Geographic124 1620132 1612110 163453 169150 1694115 1629
Fisher-Price248 594266 57615 82731 811119 72343 799
Xbox México230 1424230 1424168 1486155 1499299 135592 1562
Nikon24 120833 119916 12166 122612 122010 1222
Lacoste46 66957 6580 7152 7132 7134 711